Les exercices numérotés sont tirés de l'ouvrage suivant : *Exercices de chimie générale*, Comninellis, Friedli, Sahil, Presses polytechniques et universitaires romandes, 2018.

Exercice 1 (3.2.11)

Quelle est la longueur d'onde d'un photon émis durant une transition de n = 5 à n = 2 dans un atome d'hydrogène ?

Exercice 2 (3.2.12)

Dans un atome d'hydrogène, un électron est situé sur une orbite n = 2. Un photon dont la longueur d'onde λ est de 656 nm provoque sa transition vers une autre orbite. Déterminer le niveau de cette orbite.

Exercice 3 (3.1.9)

Dans l'atome de cuivre à l'état fondamental, combien d'électrons sont caractérisés par le nombre quantique magnétique $m_1 = +1$? (Remarque : la configuration électronique du cuivre à l'état fondamental est [Ar] $4s^1$ $3d^{10}$ et non [Ar] $4s^2$ $3d^9$ comme on l'aurait prédit avec la règle de l'Aufbau)

Exercice 4 (3.1.2)

Parmi les configurations électroniques ci-dessous, qui ne correspondent pas à un état fondamental, lesquelles représentent un état excité et lesquelles sont impossibles (c'est-à-dire violent une loi ou un principe fondamental) ?

- a) $1s^2 2s^1 2p^1$
- b) $1s^2 2s^2 2p^6 3s^2 3p^2 3d^2$
- c) $1s^2 2s^2 2p^6 3s^3$
- d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10} 4p^3$
- e) $1s^2 2s^2 2p^6 2d^2$

Exercice 5 (3.1.4)

La configuration électronique d'un atome neutre est la suivante :

$$1s^2 2s^2 2p^6 3s^1 3p^5$$

Quel est le numéro atomique de cet élément ?

Dans quel état de configuration cet atome se trouve-t-il?

Combien d'électrons célibataires contient-il dans cette configuration ?

Quelles valeurs les nombres quantiques n et ℓ prennent-ils pour les électrons $3p^5$?

Exercice 6 (3.2.4)

Ecrire la configuration électronique à l'état fondamental des ions suivants :

Br
$$^-$$
, S^{2-} , K^+ , Sr^{2+}

Exercice 7 (4.1.3)

Quels sont les éléments dont les ions chargés 3+ présentent les configurations électroniques suivantes:

- a) [Ar]3d³ b) [Xe]4f¹45d6
- c) [Ne]
- d) [Kr]

Exercice 8 (4.2.1, modifié)

En considérant l'état fondamental, indiquer le nombre d'électrons célibataires des ions suivants:

Exercice 9 (4.2.12)

Identifier, en considérant leur position dans le tableau périodique, les espèces réagissant comme des réducteurs, des oxydants et celles qui ne sont inertes chimiquement: Na, O, Ca, Ne, F, Ar, Cs

QCM:

1) En considérant l'état fondamental, indiquer le ou les nombre(s) quantique(s) dont la valeur est la même pour tous les électrons célibataires de Fe ³⁺ :	
a) le nombre quantique principal n b) le nombre quantique secondaire l c) le nombre quantique magnétique m_1 d) le spin m_s	
2) Indiquer, dans la liste suivante, le (les) groupe(s) où les deux espèces chimiques ont le même nombre d'électrons célibataires, à l'état fondamental :	
a) Ti et Ti ²⁺ b) Ti et Ti ⁴⁺ c) Zn ²⁺ et Ni d) Mn ²⁺ et Fe ³⁺	
3) En considérant l'état fondamental des atomes mentionnés, indiquer la (les) proposition(s) exacte(s) dans la liste suivante	
a) dans l'atome d'azote N, trois électrons définis par $n=2$, $l=1$ ont nécessairement la rvaleur de m_s b) les électrons célibataires d'un atome ont nécessairement les mêmes valeurs de n et de l c) dans l'atome d'arsenic As, il y a 8 électrons avec $m_l=0$ d) dans l'atome de mercure Hg, il y a 8 électrons avec $m_l=-2$	même
4. Indiquer la (les) affirmation(s) correcte(s) dans la liste suivante	
a) Il faut plus d'énergie pour arracher un électron de l'ion Na ⁺ que de l'atome Ne b) le rayon atomique du sodium Na est plus grand que celui du chlore Cl c) la 1ère énergie d'ionisation du potassium K est plus grande celle du brome Br d) l'électronégativité du césium Cs est plus élevée que celle du sodium Na	